[별첨] 한화오션 직무별 담당 업무 소개

직무	상세 직무 (근무지)	담당 업무
설계	기본설계 (서울)	제품 계약 단계부터 영업조직과 함께 고객과의 협의에 참여하여 제품의 제원, 성능 및 각종 장비/장치의 기술 사양을 결정하고 견적을 수행하며, 사양서(instructions) 및 초기도면 등 기술자료를 작성하여 제품의 초기 모습을 결정합니다. 선주/선급/장비공급업체 등과 유기적으로 협업할 뿐만 아니라, 변화하는 시장 상황을 주도하는 신기술/신제품을 개발하는 업무를 수행하며 경쟁력 있는 수주를 확보합니다.
생산관리	생산관리 (거제)	가공, 조립, 탑재, 의장, 도장, 시운전 등 각 선박의 공종별로 일정·품질·안전·자재·인원·예산을 종합적으로 관리하며, 효율적인 생산 전략과 실행 계획을 수립하여 현장의 생산 활동을 체계적으로 지원합니다. 또한 생산 공법을 개발하거나 개선 과제를 발굴하여 공정 효율성과 품질 경쟁력을 지속적으로 높이는 역할을 수행 합니다.
	시운전 (거제)	선박의 주요 장비에 대한 FAT(Factory Acceptance Test) 및 시운전 업무를 수행하며, 시운전 과정의 절차 표준화와 공정 계획수립 및 관리를 통해 품질과 안정성을 확보합니다. 또한 안벽 계류 및 해상 시운전을 포함해 기장, 선장, 전장 등 전 분야의 시운전 업무를 총괄하며, 선원 교육과 선주 지원 활동을 통해 선박의 최종 인도 품질을 완성합니다.
	품질관리 (거제)	계약서, 규격서, 도면, 품질관리 기준 등 품질 요구사항을 검토하고 피드백을 제공하며, 이를 바탕으로 품질 검사 절차서를 작성하고 선주 및 선급의 승인을 획득합니다. 또한, 구조, 배관, 도장, 의장, 무장, 자재 등 각 공종별 품질 검사를 수행하여 제품이 요구 기준과 규격을 충족하도록 관리합니다.
	공무 (거제)	조선소 내 시설, 설비, 장비의 투자와 유지 관리를 담당하는 직무입니다. 견적, 공정, 품질, 안전, 예산, 협력사 관리 등 생산 활동 전반의 관리 업무를 수행합니다. 또한 ISO50001 (에너지경영시스템) 기준에 따라 온실가스 및 에너지 최적화 관리 시스템을 운영합니다.
	환경안전 (거제)	HSE 제도 기획·운영과 경영지표 관리를 수행하며, 관련 법규의 해석·적용 및 이행 관리를 담당합니다. 또한, 공정안전관리(PSM), 위험성 평가, 개선 대책 수립을 통해 안전 리스크를 체계적으로 관리하고, 현장 안전 점검, 교육, 인허가 지원과 같은 현장 안전관리 업무를 수행합니다. 더불어 중대재해 예방 및 안전경영시스템 인증 대응, 유해·위험 기계·기구의 법정 점검을 수행하고, HSE 현황을 분석하고 통계로 관리·보고하여 안전 경영을 지원합니다.

직무	상세 직무	담당 업무
- 11	,	탈탄소 친환경 선박에 적용이 가능한 혁신적인 신개념 추진기,
	성능최적화연구 (서울)	Energy Saving Device, 선형 등의 효율성과 성능 향상을 위한
		최적화 기술을 개발하고 연구합니다. 이를 위해 수치해석과 실험적
		검증을 병행하며, 연료 효율 개선, 온실가스 배출 저감, 선박 운항
		성능 향상을 목표로 합니다.
	구조/진동소음연구 (서울)	제품 개발과 검증에 필요한 다양한 구조 엔지니어링 및 구조물의
		강도/피로 해석, 진동/소음에 관한 해석과 이를 감소시키는 장치를 연구하고 개발합니다. 풍력 보조 추진시스템과 같은 대형 Energy
		Saving Device 구조 개발 및 경량화, 수중방사소음과 관련된 기술
		연구를 수행하고 있습니다.
		파랑 중에 놓인 부유체에 대한 유체 관련 전문 지식을 바탕으로
	유체연구 (서울)	내항, 조종, 계류, DP(Dynamic Positioning), 슬로싱 등 다양한
		해양 환경에서의 특수한 기술과 요구에 대응하며, 이를 토대로
		회사의 주력 제품들의 엔지니어링 역량을 더욱 고도화하는 연구를
		수행합니다. 이러한 전문적인 역량을 활용하여 신개념의 혁신적인
		제품들을 개발하는 데에도 주력하고 있습니다.
	제어지능화연구 (서울)	선박 무인화·전동화를 위한 친환경 시스템 및 장비(Pump,
		Compressor 등을 포함한 패키지 장비 등) 자동화 시스템
		연구개발, 전기추진시스템용 전력 변환 장치, 배전반, 추진 모터, ESS 등에 대한 전기 시스템 통합 엔지니어링 및 전동화 기술 개발,
		자율화(Autonomy)를 위한 AI 기술을 개발합니다.
_		암모니아, 수소 등 친환경 연료로 전환하기 위한 대응 기술과
연구	추진시스템연구 (서울)	연료전지, SMR 등 미래 제품에 적용할 추진 기술을 연구합니다.
		개발 기술을 실증하고 성능을 검증하기 위한 설비를 운용하며
		상용화하기 위한 연구를 수행합니다.
		LNG, LPG, 액화이산화탄소, 액화암모니아, 액화수소와 같은 다양한
	CCS 솔루션연구 (서울)	액화가스를 안전하게 저장할 수 있는 탱크 연구 및 개발을 수행합니다. 이를 위해 액화가스 저장탱크와 관련된 소재 연구 및
		- 무행합니다. 이글 뒤에 직외기의 시청청그의 원인된 오세 친구 요소기술 개발을 포함한 기반 연구를 진행하고 있으며, 탱크의
		쓰스기를 개발을 보다면 기단 단기를 단하하고 찌르기 하고 설계, 해석, 실증을 통한 상용화 연구도 수행합니다. 선박 및 해양
		제품에 안전하게 적용할 수 있는 액화가스 저장탱크 제품을
		개발하는 것을 목표로 하고 있습니다.
		LNG, LPG와 같은 전통적인 화석연료부터 암모니아, 수소와 같은
	CHS솔루션연구	친환경 연료에 이르기까지, 극저온 가스화물의 안정적인 처리를
	(서울)	위한 공정 엔지니어링 및 시스템 개발을 수행합니다. 이를 바탕으로
	(´`! さ <i>!</i>	탄소배출 저감 및 무탄소 연료 전환에 기여하는 친환경 기술
		개발을 추진합니다.
		모형 시험을 통한 선박의 저항, 추진, 내항성, 조종 성능을 평가하며, 추진기의 캐비테이션, 변동 압력 및 소음 성능에 대한
	성능평가 (서울)	평가이며, 우선기의 게미테이션, 현충 합복 및 쪼금 성능에 대한 계측 및 평가를 수행합니다. 모형선, 추진기, ESD 등 각종
		기기 및 이기를 포이되어의 포이먼, 포인기, LSD 이 기이 부가물과 슬로싱 탱크 등을 정밀 가공 및 제작하고, 연료탱크 및
		화물창의 슬로싱 하중을 평가하며, 친환경 에너지 화물창의 최적
		형상을 연구합니다.

	함정성능연구	함정에 특화된 핵심 기술 확보를 통해 함정의 은밀성, 생존성 등을 고려한 최적 설계 및 핵심 시스템·장비 연구, 개발, 실증을 수행합니다. 함정의 스텔스 성능과 관련된 수중방사소음(URN), 음향표적강도(T/S), 소나 자체소음, 레이더반사면적(RCS),
	(서울)	적외선신호(IR), 소음/진동 등을 해석·계측·분석하고 신호 저감
		기술을 개발합니다. 또한 피격성 분석, 취약성 해석(내충격 포함),
		회복성 분석을 통한 통합 생존성 분석 기술과 자체 해석 툴 개발을
연구		수행합니다.
	함정체계연구 (서울)	함정의 스마트화, 무장 체계 국산화 및 전기추진 관련 핵심 기술
		연구 및 개발을 수행합니다. ICT, 인공지능, 자동화 기술을 접목한
		스마트 함정 요소기술, 병력 절감형 플랫폼, 함정체계 연동 및 복합
		성능평가장비, 상태기반정비(CBM), 통합체계지원(IPS) 등을
		개발하며, 잠수함 무장 발사 장치 개발 및 시험, 함정용 연료전지
		시스템과 배터리 통합·최적화 연구를 통해 전기추진시스템 기술을
		확보합니다.