본문 바로가기 메뉴 바로가기

서울공대 웹진

서울공대의 최신 소식을 전합니다

공대상상 웹진

공대상상의 최신 소식을 전합니다.

공지사항

공대뉴스

서울대 공대 전기정보공학부 광공학 및 양자전자연구실, VR·AR 디바이스에 최적화된 카메라 초소형화 기술 개발

서울대 공대 전기정보공학부 광공학 및 양자전자연구실, VR·AR 디바이스에 최적화된 카메라 초소형화 기술 개발

서울대 공대 전기정보공학부 광공학 및 양자전자연구실, VR·AR 디바이스에 최적화된 카메라 초소형화 기술 개발- 나노광학 소자 ‘메타표면’ 활용해 0.7mm 두께의 렌즈 시스템 구현- 국제 학술지 ‘사이언스 어드밴스’ 논문 게재   ▲ 서울대 전기정보공학부 광공학 및 양자전자연구실 김영진 연구원(왼쪽), 최태원 연구원(오른쪽)서울대학교 공과대학은 전기정보공학부 광공학 및 양자전자연구실 연구팀이 차세대 나노광학 소자인 ‘메타표면(Metasurfaces)’을 활용한 폴디드 렌즈(folded lens) 시스템으로 카메라의 부피를 대폭 줄이는 광학 설계 기술을 개발했다고 밝혔다. 빛이 유리기판 안에서 접히듯 반사되며 이동할 수 있도록 기판에 메타표면을 배열함으로써 기존 굴절 렌즈 시스템보다 훨씬 얇은 0.7mm 두께의 렌즈 시스템을 구현해낸 것이다. 삼성미래기술육성사업 및 정보통신기획평가원(IITP)의 디지털콘텐츠원천기술개발사업의 지원을 받은 이번 연구의 성과는 저명한 국제 학술지 ‘사이언스 어드밴스(Science Advances)’에 지난 10월 30일 게재된 바 있다. 기존 카메라는 이미지 촬영 시 빛을 굴절시키기 위해 여러 개의 유리 렌즈를 쌓는 방식으로 설계됐다. 이 구조는 뛰어난 고해상도의 이미지를 제공했지만, 각 렌즈의 두께와 렌즈 간 넓은 간격은 카메라의 전체 부피를 늘리는 요인으로 작용했다. 따라서 가상·증강현실(VR·AR) 디바이스, 스마트폰, 내시경, 드론 등과 같이 초소형 카메라가 필요한 기기에는 적용이 어려운 한계를 보였다.  ▲ 나노광학 소자인 메타표면을 활용해 빛의 경로를 확보한 차세대 초박형 카메라의 모식도: 유리기판에 수평으로 배열된 여러 장의 메타표면을 사용하여 빛이 기판 내부에서 여러 번 접히듯 반사되도록 함으로써 공간을 효율적으로 활용한 카메라 시스템을 구현했다.이에 연구팀은 메타표면을 도입한 새로운 렌즈 설계 방식으로 기존 광학 소자의 두께를 절반 이하로 줄인 초박형 카메라 시스템을 개발했다. 차세대 나노광학 소자로 각광받는 메타표면은 빛의 세 가지 특성인 세기, 위상, 편광을 픽셀 단위로 정밀하게 조절하는 강점을 지닌다. 메타표면을 구성하는 나노구조체들이 빛의 파장보다 짧은 수백 나노미터(nm) 주기로 배열돼 있기 때문이다. 연구팀에 따르면 특정 파장(852nm)에 최적화한 메타표면을 설계해 유리 기판에 여러 장을 수평으로 배열하면 빛이 기판 내부에서 반사를 여러 번 반복하므로 렌즈의 공간적 효율성을 극대화할 수 있다. 빛의 경로를 조정하는 얇은 두께의 폴디드 렌즈 시스템으로 이미지를 촬영하는 초소형 카메라의 구조를 제시한 것이다. 또한 이 시스템은 두꺼운 기존 렌즈의 물리적 한계를 극복했을 뿐 아니라 우수한 이미지 품질도 제공한다. 두께 0.7mm의 매우 좁은 시스템 공간 내에서 10도의 시야각을 제공하고, f/4의 조리개 값과 852nm의 파장에서 회절 한계(diffraction limit)에 가까운 고해상도 이미지를 전달하기 때문이다. 이러한 강력한 경쟁력 덕분에 연구진이 개발한 초소형 카메라 기술은 VR·AR 기기, 스마트폰, 의료용 내시경, 초소형 드론 등 다양한 첨단 광학 기기 산업에서 널리 응용될 것으로 전망된다.      ▲ (왼쪽) 기존의 모바일폰 렌즈 모듈과 이번 연구에서 개발한 메타표면 렌즈 모듈의 두께를 비교한 사진 (가운데) 현미경으로 찍은 메타표면 나노 공정 결과 사진 (오른쪽) 메타표면을 구성하는 나노구조체가 배열된 사진논문의 제1저자인 김영진 연구원은 “나노광학 소자를 도입해 카메라의 두께를 혁신적으로 줄이는 창의적인 돌파구를 제시했다는 점에서 이번 연구는 큰 의의를 지닌다”며 “나노미터 단위의 빛 조절 자유도와 반도체 공정을 통한 제조 방식 덕분에 뛰어난 성능과 산업적 이점을 겸비한 메타표면으로 얇고 가벼운 카메라의 혁신을 주도하는 연구를 계속할 예정”이라고 전했다. 공동 제1저자로서 함께 연구를 수행한 최태원 연구원은 “이번 연구는 메타표면을 활용해 렌즈 공간을 효율적으로 활용하는 데 주안점을 뒀다”면서 “폴디드 렌즈 시스템은 다수의 렌즈를 조합한 구조 때문에 두꺼웠던 기존 시스템과 달리 두께가 매우 얇으므로 소자의 소형화와 경량화가 필수적인 가상·증강현실 산업에서 중요한 역할을 해낼 것”이라고 기대감을 드러냈다. 한편 연구팀이 속한 광공학 및 양자전자연구실은 2022년 11월에 작고한 고(故) 이병호 교수에 이어 현재는 전기정보공학부 정윤찬 교수가 지도 중이며 3차원 디스플레이, 홀로그래피 및 메타표면 관련 연구를 활발히 진행하고 있다. 김영진 연구원은 향후 메타표면을 활용해 카메라를 비롯한 이미징 디바이스의 한계를 극복하는 후속 연구에 매진할 예정이다. 최태원 연구원은 VR·AR 소자, 카메라 센서, 이미지 센서 등 관련 산업 전반에서 메타표면을 응용하는 연구를 이어갈 계획이다. [참고자료]Y. Kim†, T. Choi†, G. -Y. Lee, C. Kim, J. Bang, J. Jang, Y. Jeong, and B. Lee, “Metasurface folded lens system for ultrathin cameras,” Science Advances, vol. 10, no. 44, adr2319, 2024.https://www.science.org/doi/10.1126/sciadv.adr2319[문의]- 서울대학교 전기정보공학부 광공학 및 양자전자연구실 김영진 연구원 / 010-5317-8592 / ttw8592@snu.ac.kr- 서울대학교 전기정보공학부 광공학 및 양자전자연구실 최태원 연구원 / 010-9588-3744 / xodnjs222@snu.ac.kr

2024.11.18

서울대 공대 기계공학부 고승환 교수팀, 필터 교체 필요없는 미세 버블 공기 정화 시스템 개발

서울대 공대 기계공학부 고승환 교수팀, 필터 교체 필요없는 미세 버블 공기 정화 시스템 개발

서울대 공대 기계공학부 고승환 교수팀, 필터 교체 필요없는 미세 버블 공기 정화 시스템 개발인체 호흡기/순환계 모사로 물을 이용해 미세먼지와 이산화탄소 문제 동시 해결 ▲ (왼쪽부터) 서울대학교 기계공학부 정성민 연구원(공동 제1저자), 한국과학기술연구원 신재호 연구원(공동 제1저자), 서울대학교 기계공학부 고승환 교수(교신저자)서울대학교 공과대학은 기계공학부 고승환 교수 연구팀이 폐기물이 나오는 기존 고체 필터 대신 물을 이용한 미세 버블 필터를 사용한 친환경 공기 정화 시스템 기술을 개발했다고 밝혔다. 밀폐된 실내 환경은 산소 감소와 이산화탄소 축적, 그리고 미세먼지와 휘발성 유기화합물로 인한 공기 오염을 유발한다. 이 경우 환기는 외부 오염물질 유입의 위험을 수반하기 때문에 보다 고도화된 정화 방법이 요구된다.  기존 공기 정화 시스템의 여과식 필터는 미세먼지 축적에 따른 성능 저하, 휘발성 유기화합물과 같은 분자상 물질 제거의 어려움 등으로 인해 밀폐된 실내에서는 사용이 부적합했다. 또한 주기적으로 청소와 교체가 필요한 필터로 인해 발생하는 폐기물로 환경 오염 문제가 불거짐에 따라 새로운 개념의 친환경적 공기 정화 기술에 대한 요구가 커졌다.이에 연구팀은 인체의 호흡기와 순환계의 기체 교환 원리를 모사, 실내 미세먼지를 제거하는 동시에 축적된 이산화탄소와 휘발성 유기화합물을 실외로 배출해 부족한 산소를 공급하는 종합 공기 정화 시스템을 개발했다. ▲ (그림1) 인체 순환계/호흡기관 모사 공기 정화 시스템의 개념 및 실제 구성 모습(A) 인체 내에서 일어나는 기체 교환과 노폐물 배출 과정의 모식도(왼쪽). 인체와 유사한 구조의 순환식 공기 정화 시스템 구조 모식도(오른쪽).(B) 물, 기체 교환 장치, 순환 펌프로 이루어진 순환식 공기 정화 시스템의 구성 모습.(C) 마이크로 버블을 이용한 기체 교환 장치의 구조 및 탄성 마이크로 기공 필터 모습(왼쪽). 실제 마이크로버블 발생 시 초고속 카메라로 촬영한 사진(오른쪽).인체의 순환계와 호흡기관은 외부 오염물질의 유입을 막으면서 혈액이라는 매개체를 통해 세포에 필요한 산소를 공급하고, 불필요한 이산화탄소는 외부로 배출한다. 이때 폐포와 모세혈관에서 자연스러운 기체 교환이 이뤄지면서 미세먼지의 유입을 차단하는데, 이 과정에서 신장을 통해 노폐물이 배출된다. 이 원리에서 영감을 받은 연구팀은 혈액 순환을 모사한 물 순환 시스템을 구현했다. 이를 통해 실내 공기의 이산화탄소 농도까지 정상 유지할 수 있음을 확인했고, 레이저 기술을 활용해 개발한 탄성 필터가 기존의 버블 제작 방식을 사용할 때보다 더욱 작고 균일한 미세 버블을 형성할 수 있음을 입증했다.이 마이크로 버블에 기반한 기체 교환 시스템은 간단한 원리와 구조로 이루어져 있어, 장치의 크기 또는 개수를 늘리는 것만으로도 스케일업이 가능하다. 연구팀은 이 시스템이 탁상형과 차량용 등 소형부터 사무실, 회의실 등과 같은 대형 공간까지 적용 가능함을 실험적으로 증명했다.▲ (그림2) 인체 모사 순환식 공기 정화 시스템의 미세먼지 및 CO2 제거 성능 평가(A) 밀폐된 공간의 미세먼지(PM) 제거 과정 사진(왼쪽). 다양한 미세먼지 크기에 대한 필터 효율 측정 결과(오른쪽).(B) 밀폐된 공간의 이산화탄소 제거 과정 사진(왼쪽). 물 순환 속도에 따른 CO2 제거 성능 측정 결과(오른쪽).(C) 호흡에 의한 실내 산소 부족/이산화탄소 축적 문제 확인 및 해결을 위한 동물실험 사진(위쪽). 순환식 공기 정화 시스템 작동 여부에 따른 쥐의 활동량 측정 결과(아래쪽). 고승환 교수는 이번 연구 성과에 관해 “여과식 필터 대신 물을 사용한 간단한 원리로 공기 중에 존재하는 오염 입자부터 분자까지 동시에 정화할 수 있을 뿐 아니라 필터 폐기물 없는 친환경 기술로 기존의 필터 시스템을 대체할 수 있을 것으로 기대한다”고 밝혔다.과학기술정보통신부와 한국연구재단이 추진하는 중견연구사업의 지원으로 수행된 이번 연구의 성과는 지난 10월 10일 재료 분야의 국제 저명학술지 ‘어드벤스드 머티리얼스(Advanced Materials)’에 실린 바 있다.[참고자료]“Human Circulatory/Respiratory-Inspired Comprehensive Air Purification System”, Advanced Materialshttps://doi.org/10.1002/adma.202405568[문의]서울대학교 기계공학부 고승환 교수 / 02-880-1681 / maxko@snu.ac.k

2024.11.15

서울대 공대 재료공학부 정인호 교수, 美 금속재료학회 ‘Sadoway Materials Innovation and Advocacy Award’ 수상

서울대 공대 재료공학부 정인호 교수, 美 금속재료학회 ‘Sadoway Materials Innovation and Advocacy Award’ 수상

서울대 공대 재료공학부 정인호 교수, 美 금속재료학회 ‘Sadoway Materials Innovation and Advocacy Award’ 수상혁신적 재료 및 지속가능한 공정 개발에 기여한 공로 인정받아  ▲ 서울대학교 재료공학부 정인호 교수서울대학교 공과대학은 재료공학부 정인호 교수가 미국 금속·재료학회(TMS)가 주관하는 ‘Sadoway Materials Innovation and Advocacy Award’의 2025년 수상자로 선정됐다고 밝혔다. 지속가능한 재료 공정에 기여한 미국 매사추세츠 공대(MIT) 재료화학공학과 도널드 새도웨이(Donald R. Sadoway) 교수의 공로를 기리는 ‘Sadoway Materials Innovation and Advocacy Award’는 연구, 교육, 정책적 노력 등을 통해 재료과학 및 공학 분야, 특히 지속가능성(sustainability) 분야에서 혁신적 업적을 거둔 중견 연구자에게 수여하는 상이다. 정인호 교수는 재료 열역학 데이터베이스 개발과 교육을 통해 혁신적 재료개발 및 지속가능한 공정 개발에 기여한 공헌을 인정받아 본 상을 수상했다. 그간 정 교수는 금속 및 세라믹 재료의 열역학 데이터베이스 개발 및 이를 이용한 재료설계 및 공정 최적화, 철강제조 공정 설계 및 탄소중립 관련 공정 기술 개발 등을 주제로 연구를 수행해온 바 있다. 시상식은 내년 3월 미국 라스베이거스에서 열리는 제154회 TMS 학술대회(TMS 2025 Annual Meeting)에서 개최될 예정이다. 정 교수는 “지난 20여 년 동안 재료 분야의 열역학 데이터베이스 개발에 매진하고, 이를 전 세계 재료분야 연구자들이 활용할 수 있게 교육 및 전파해온 노력을 인정받은 데 대해 깊은 감사의 말씀을 드린다”고 수상 소감을 전하며 “학계와 산업계에서 열역학 계산을 활용하여 혁신적이고 지속가능한 재료 및 공정설계를 수행할 수 있도록 관련 연구 및 교육을 계속해나갈 계획”이라고 밝혔다. 2007년부터 2017년까지 캐나다 맥길대학교(McGill University) 광업 및 재료공학과에서 조교수와 부교수를 지낸 정 교수는 현재 서울대학교 재료공학부 교수로 재직 중이다. 또한 2009년부터 전 세계 14개 철강 관련 기업이 공동 지원하는 철강 컨소시엄(Steelmaking Consortium)의 과제 책임자를 맡아오고 있다.

2024.11.14

서울대학교공과대학 학과/학부를 소개합니다.

건설환경공학부

Civil and Environmental Engineering

자세히 보기

건설환경공학부

Civil and Environmental Engineering

자세히 보기
USER
SERVICE